Part Number Hot Search : 
95200 C6VDC MUR7010 MC1403 BLF6G 6M181RPA 7461116 1A08AV
Product Description
Full Text Search
 

To Download MAX2067ETL Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  general description the max2067 high-linearity analog variable-gain ampli- fier (vga) is a monolithic sige bicmos attenuator and amplifier designed to interface with 50 ? systems oper- ating in the 50mhz to 1000mhz frequency range (see the typical application circuit ). the analog attenuator is controlled using an external voltage or through the spi-compatible interface using an on-chip 8-bit dac. because each stage has its own rf input and rf out- put, this component can be configured to either opti- mize nf (amplifier configured first), or oip3 (amplifier last). the device? performance features include 22db amplifier gain (amplifier only), 4db nf at maximum gain (includes attenuator insertion loss), and a high oip3 level of +43dbm. each of these features makes the max2067 an ideal vga for numerous receiver and transmitter applications. in addition, the max2067 operates from a single +5v supply with full performance, or a single +3.3v supply with slightly reduced performance, and has an adjustable bias to trade current consumption for linearity performance. this device is available in a compact 40- pin thin qfn package (6mm x 6mm) with an exposed pad. electrical performance is guaranteed over the extended temperature range (t c = -40? to +85?). applications if and rf gain stages temperature compensation circuits cellular band wcdma and cdma2000?base stations gsm 850/gsm 900 edge base stations wimax and lte base stations and customer premise equipment fixed broadband wireless access wireless local loop military systems video-on-demand (vod) and docsis? compliant edge qam modulation cable modem termination systems (cmts) rfid handheld and portal readers features 50mhz to 1000mhz rf frequency range pin-compatible family includes max2065 (analog/digital vga) max2066 (digital vga) +21.9db (typ) maximum gain 0.5db gain flatness over 100mhz bandwidth 31db gain range built-in dac for analog attenuation control excellent linearity (configured with amplifier last) +43dbm oip3 +66dbm oip2 +19dbm output 1db compression point -70dbc hd2 -87dbc hd3 4db typical noise figure (nf) single +5v supply (optional +3.3v operation) external current-setting resistors provide option for operating device in reduced-power/ reduced-performance mode max2067 50mhz to 1000mhz high-linearity, serial/analog-controlled vga ________________________________________________________________ maxim integrated products 1 ordering information 19-4080; rev 0; 4/08 for pricing, delivery, and ordering information, please contact maxim direct at 1-888-629-4642, or visit maxim? website at www.maxim-ic.com. + denotes a lead-free package. * ep = exposed pad. t = tape and reel. pin configuration appears at end of data sheet. spi is a trademark of motorola, inc. cdma2000 is a registered trademark of telecommunications industry association. docsis and cablelabs are registered trademarks of cable television laboratories, inc. (cablelabs?. part temp range pin-package MAX2067ETL+ -40? to +85? 40 thin qfn-ep* MAX2067ETL+t -40? to +85? 40 thin qfn-ep*
max2067 50mhz to 1000mhz high-linearity, serial/analog-controlled vga 2 _______________________________________________________________________________________ absolute maximum ratings +3.3v supply dc electrical characteristics ( typical application circuit , high-current (hc) mode, v cc = v dd = +3.0v to +3.6v, t c = -40? to +85?. typical values are at v cc = v dd = +3.3v and t c = +25?, unless otherwise noted.) stresses beyond those listed under ?bsolute maximum ratings?may cause permanent damage to the device. these are stress rating s only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specificatio ns is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. note 1: based on junction temperature t j = t c + ( jc x v cc x i cc ). this formula can be used when the temperature of the exposed pad is known while the device is soldered down to a printed-circuit board (pcb). see the applications information section for details. the junction temperature must not exceed +150?. note 2: junction temperature t j = t a + ( ja x v cc x i cc ). this formula can be used when the ambient temperature of the pcb is known. the junction temperature must not exceed +150?. note 3: package thermal resistances were obtained using the method described in jedec specification jesd51-7, using a 4-layer board. for detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial . note 4: t c is the temperature on the exposed pad of the package. t a is the ambient temperature of the device and pcb. vcc_ to gnd ........................................................-0.3v to +5.5v vdd_logic, data, cs , clk, vdac_en, vref_select.....................................-0.3v to (vcc_ + 0.3v) amp_in, amp_out, vref_in, analog_vctrl ................................-0.3v to (vcc_ + 0.3v) atten_in, atten_out........................................-1.2v to +1.2v rset to gnd.........................................................-0.3v to +1.2v rf input power (atten_in, atten_out).....................+20dbm rf input power (amp_in)...............................................+18dbm continuous power dissipation (note 1) ...............................6.5w ja (notes 2, 3)..............................................................+38?/w jc (note 3) ...................................................................+10?/w operating temperature range (note 4) .....t c = -40? to +85? maximum junction temperature .....................................+150? storage temperature range .............................-65? to +150? lead temperature (soldering, 10s) .................................+300? parameter symbol conditions min typ max units supply voltage v cc note 5 3.0 3.3 3.6 v supply current i cc 60 82 ma logic inputs (data, cs , clk, vdac_en, vref_select) input high voltage v ih 2v input low voltage v il 0.8 v +5v supply dc electrical characteristics ( typical application circuit , v cc = v dd = +4.75v to +5.25v, t c = -40? to +85?. typical values are at v cc = v dd = +5v and t c = +25?, unless otherwise noted.) parameter symbol conditions min typ max units supply voltage v cc 4.75 5 5.25 v low-current (lc) mode 72 92 supply current i cc high-current (hc) mode 123 146 ma logic inputs (data, cs , clk, vdac_en, vref_select) input high voltage v ih 3v input low voltage v il 0.8 v input current logic-high i ih -1 +1 ? input current logic-low i il -1 +1 ?
max2067 50mhz to 1000mhz high-linearity, serial/analog-controlled vga _______________________________________________________________________________________ 3 +5v supply ac electrical characteristics ( typical application circuit , v cc = v dd = +4.75 to +5.25v, hc mode with attenuator set for maximum gain, 50mhz f rf 1000mhz, t c = -40? to +85?. typical values are at v cc = v dd = +5.0v, hc mode, p in = -20dbm, f rf = 200mhz, and t c = +25?, unless otherwise noted.) (note 6) parameter symbol conditions min typ max units rf frequency range f rf (notes 5, 7) 50 1000 mhz 200mhz 21.9 350mhz, t c = +25? (note 5) 20.3 21.3 22.3 450mhz 20.9 750mhz 19.4 small-signal gain g 900mhz 18.7 db gain variation vs. temperature -0.006 db/? gain flatness vs. frequency any 100mhz frequency band from 50mhz to 500mhz 0.5 db 200mhz 4 350mhz, t c = +25? (note 5) 4.2 5.2 450mhz 4.3 750mhz 4.8 noise figure nf 900mhz 5 db total attenuation range 31 db output second-order intercept point oip2 p out = 0dbm/tone, ? f = 1mhz, f 1 + f 2 66 dbm 200mhz 43 350mhz 40.8 450mhz 39.8 750mhz 37.3 p out = 0dbm/tone, h c m od e, ? f = 1m h z 900mhz 36.2 200mhz 40 350mhz 38.2 450mhz 37.4 750mhz 35.5 output third-order intercept point oip3 p out = 0dbm/tone, lc mode, ? f = 1mhz 900mhz 34.3 dbm +3.3v supply ac electrical characteristics ( typical application circuit , v cc = v dd = +3.0v to +3.6v, t c = -40? to +85?. typical values are at v cc = v dd = +3.3v, hc mode with attenuator set for maximum gain, p in = -20dbm, f rf = 200mhz, and t c = +25?, unless otherwise noted.) (note 6) parameter symbol conditions min typ max units rf frequency range f rf (notes 5, 7) 50 1000 mhz small-signal gain g 21.3 db output third-order intercept point oip3 p out = 0dbm/tone, maximum gain setting 38 dbm noise figure nf maximum gain setting 4.3 db total attenuation range 31 db
max2067 50mhz to 1000mhz high-linearity, serial/analog-controlled vga 4 _______________________________________________________________________________________ +5v supply ac electrical characteristics (continued) ( typical application circuit , v cc = v dd = +4.75 to +5.25v, hc mode with attenuator set for maximum gain, 50mhz f rf 1000mhz, t c = -40? to +85?. typical values are at v cc = v dd = +5.0v, hc mode, p in = -20dbm, f rf = 200mhz, and t c = +25?, unless otherwise noted.) (note 6) parameter symbol conditions min typ max units output -1db compression point p 1db 350mhz, t c = +25? (notes 5, 8) 17 18.7 dbm second harmonic p out = +3dbm, f rf = 200mhz, t c = +25? (note 5) -61 -70 dbc third harmonic p out = +3dbm, f rf = 200mhz, t c = +25? (note 5) -74 -87 dbc input from analog_vctrl 1 attenuator response time (note 9) input from cs rising edge 3.2 ? group delay maximum gain setting, includes ev kit pcb delays 0.8 ns input return loss 50 ? source, maximum gain setting 30 db output return loss 50 ? load, maximum gain setting 16 db analog attenuator insertion loss 1.2 db input second-order intercept point iip2 p rf1 = 0dbm, p rf2 = 0dbm, maximum gain setting, ? f = 1mhz, f 1 + f 2 70 dbm input third-order intercept point iip3 p rf1 = 0dbm, p rf2 = 0dbm, maximum gain setting, ? f = 1mhz 36 dbm attenuation range analog control input 31 db gain-control slope analog control input -12.5 db/v maximum gain-control slope over analog control input range -35 db/v insertion phase change over analog control input range 18 d eg r ees group delay vs. control voltage over analog control input range -0.25 ns analog control input range 0.25 2.75 v analog control input impedance 80 k ? input return loss 50 ? source, maximum gain setting 22 db output return loss 50 ? load, maximum gain setting 22 db dac number of bits 8 bits dac code = 00000000 0.25 output voltage dac code = 11111111 2.75 v
max2067 50mhz to 1000mhz high-linearity, serial/analog-controlled vga _______________________________________________________________________________________ 5 +5v supply ac electrical characteristics (continued) ( typical application circuit , v cc = v dd = +4.75 to +5.25v, hc mode with attenuator set for maximum gain, 50mhz f rf 1000mhz, t c = -40? to +85?. typical values are at v cc = v dd = +5.0v, hc mode, p in = -20dbm, f rf = 200mhz, and t c = +25 o c, unless otherwise noted.) (note 6) parameter symbol conditions min typ max units serial peripheral interface (spi) maximum clock speed f clk 20 mhz data-to-clock setup time t cs 2ns data-to-clock hold time t ch 2.5 ns clock-to- cs setup time t es 3ns cs positive pulse width t ew 7ns cs setup time t ews 3.5 ns clock pulse width t cw 5ns note 5: guaranteed by design and characterization. note 6: all limits include external component losses. output measurements are performed at rf output port of the typical application circuit note 7: operating outside this range is possible, but with degraded performance of some parameters. note 8: it is advisable not to continuously operate the vga rf input above +15dbm. note 9: response time includes full attenuation range change with output setting to within ?.1db.
max2067 50mhz to 1000mhz high-linearity, serial/analog-controlled vga 6 _______________________________________________________________________________________ gain over attenenuator setting vs. rf frequency max2067 toc04 rf frequency (mhz) gain (db) 850 450 650 250 -6 4 14 24 -16 -1 9 19 -11 50 1050 dac code 256 dac code 64 dac code 0 dac code 128 dac code 32 gain vs. attenuator setting max2067 toc05 dac code gain (db) 32 96 64 160 224 192 128 -6 4 14 24 -11 -1 9 19 -16 0 256 1000mhz 450mhz 200mhz 50mhz gain vs. attenuator setting max2067 toc06 dac code gain (db) 96 224 160 128 32 64 192 4 19 24 14 9 -16 -6 -11 -1 0256 t c = -40 c, +25 c, +85 c f rf = 200mhz gain vs. attenuator setting max2067 toc07 dac code gain (db) 96 224 160 128 32 64 192 4 19 24 14 9 -16 -6 -11 -1 0256 v cc = 4.75v, 5.00v, 5.25v f rf = 200mhz input match vs. attenuator setting max2067 toc08 dac code input match (db) 128 192 160 32 96 64 224 -25 -20 -15 -10 -40 -35 -30 0 256 450mhz 50mhz 1000mhz 200mhz output match vs. attenuator setting max2067 toc09 dac code output match (db) 128 192 160 32 96 64 224 -15 -10 -5 0 -30 -25 -20 0256 450mhz 50mhz 1000mhz 200mhz supply current vs. supply voltage max2067 toc01 v cc (v) supply current (ma) 5.125 5.000 4.875 110 120 130 140 150 100 4.750 5.250 t c = +85 c t c = +25 c t c = -40 c gain vs. rf frequency max2067 toc02 rf frequency (mhz) gain (db) 850 450 650 250 17 18 19 21 20 22 23 24 16 50 1050 t c = +25 c t c = -40 c t c = +85 c gain vs. rf frequency max2067 toc03 rf frequency (mhz) gain (db) 850 450 650 250 17 18 19 21 20 22 23 24 16 50 1050 v cc = 4,75v, 5.00v, 5.25v typical operating characteristics ( v cc = v dd = +5.0v, hc mode , attenuator set for maximum gain, p in = -20dbm, f rf = 200mhz, and t c = +25?, internal dac refer- ence used, unless otherwise noted.)
max2067 50mhz to 1000mhz high-linearity, serial/analog-controlled vga _______________________________________________________________________________________ 7 noise figure vs. rf frequency max2067 toc13 rf frequency (mhz) noise figure (db) 7 6 5 4 3 2 50 450 850 1050 650 250 v cc = 4.75v, 5.00v, 5.25v output p 1db vs. rf frequency max2067 toc14 rf frequency (mhz) output p 1db (dbm) 21 20 19 18 17 16 15 50 450 850 1050 650 250 t c = +85 c t c = +85 c t c = -40 c t c = -40 c t c = +25 c t c = +25 c output p 1db vs. rf frequency max2067 toc15 rf frequency (mhz) output p 1db (dbm) 21 20 19 18 17 16 15 50 450 850 1050 650 250 v cc = 5.25v v cc = 4.75v v cc = 5.00v output ip3 vs. rf frequency max2067 toc16 rf frequency (mhz) output ip3 (dbm) 50 40 45 35 30 50 450 850 1050 650 250 t c = +25 c p out = 0dbm/tone t c = -40 c t c = +85 c output ip3 vs. rf frequency max2067 toc17 rf frequency (mhz) output ip3 (dbm) 50 40 45 35 30 50 450 850 1050 650 250 v cc = 5.00v p out = 0dbm/tone v cc = 4.75v v cc = 5.25v output ip3 vs. attenuator state max2067 toc18 dac code output ip3 (dbm) 50 40 45 35 30 0 256 192 128 224 160 96 32 64 t c = +25 c, +85 c tone = lsb, usb p out = -3dbm/tone f rf = 200mhz t c = -40 c, tone = lsb, usb reverse isolation over attenuator setting vs. rf frequency max2067 toc10 rf frequency (mhz) reverse isolation (db) 850 450 650 250 -25 -35 -45 -55 -65 -75 50 1050 dac code 0 dac code 255 s21 phase change vs. attenuator setting max2067 toc11 dac code s21 phase change (deg) 128 192 160 32 96 64 224 80 70 60 50 40 30 20 10 0 -10 0256 50mhz 200mhz 1000mhz referenced to high gain state. positive phase = electrically shorter. 450mhz noise figure vs. rf frequency max2067 toc12 rf frequency (mhz) noise figure (db) 7 6 5 4 3 2 50 450 850 1050 650 250 t c = +85 c t c = +25 c t c = -40 c typical operating characteristics (continued) ( v cc = v dd = +5.0v, hc mode , attenuator set for maximum gain, p in = -20dbm, f rf = 200mhz, and t c = +25?, internal dac refer- ence used, unless otherwise noted.)
max2067 50mhz to 1000mhz high-linearity, serial/analog-controlled vga 8 _______________________________________________________________________________________ typical operating characteristics (continued) ( v cc = v dd = +5.0v, hc mode , attenuator set for maximum gain, p in = -20dbm, f rf = 200mhz, and t c = +25?, internal dac refer- ence used, unless otherwise noted.) 2nd harmonic vs. rf frequency max2067 toc19 rf frequency (mhz) 2nd harmonic (dbc) 90 40 50 60 70 80 50 450 850 1050 650 250 t c = -40 c, +25 c, +85 c p out = 3dbm 2nd harmonic vs. rf frequency max2067 toc20 rf frequency (mhz) 2nd harmonic (dbc) 90 80 70 60 50 40 50 450 850 1050 650 250 v cc = 5.25v v cc = 4.75v v cc = 5.00v p out = 3dbm 2nd harmonic vs. attenuator state max2067 toc21 dac code 2nd harmonic (dbc) 80 70 75 65 60 0 96 160 224 32 256 192 128 64 t c = +25 c p out = 0dbm f rf = 200mhz t c = -40 c t c = +85 c 3rd harmonic vs. frequency max2067 toc22 rf frequency (mhz) 3rd harmonic (dbc) 110 80 90 100 70 60 50 450 850 1050 650 250 t c = +25 c p out = 3dbm t c = -40 c t c = +85 c 3rd harmonic vs. rf frequency max2067 toc23 rf frequency (mhz) 3rd harmonic (dbc) 110 100 90 80 70 60 50 450 850 1050 650 250 v cc = 5.25v v cc = 4.75v v cc = 5.00v p out = 3dbm 3rd harmonic vs. attenuator state max2067 toc24 dac code 3rd harmonic (dbc) 110 80 90 100 70 60 0 96 160 224 32 256 192 128 64 t c = +25 c p out = 0dbm f rf = 200mhz t c = -40 c t c = +85 c oip2 vs. rf frequency max2067 toc25 rf frequency (mhz) oip2 (dbm) 90 40 50 60 70 80 50 450 850 1050 650 250 t c = -40 c, +25 c, +85 c p out = 0dbm/tone oip2 vs. rf frequency max2067 toc26 rf frequency (mhz) oip2 (dbm) 90 80 70 60 50 40 50 450 850 1050 650 250 v cc = 5.25v v cc = 4.75v v cc = 5.00v p out = 0dbm/tone oip2 vs. attenuator state max2067 toc27 dac code oip2 (dbm) 80 60 70 50 40 0 96 160 224 32 256 192 128 64 t c = +25 c p out = -3dbm/tone f rf = 200mhz t c = -40 c t c = +85 c
max2067 50mhz to 1000mhz high-linearity, serial/analog-controlled vga _______________________________________________________________________________________ 9 dac voltage using internal reference vs. dac code max2067 toc28 dac code dac voltage (v) 3.0 1.5 2.5 1.0 2.0 0.5 0 0 96 160 224 32 256 192 128 64 t c = -40 c, +25 c, +85 c dac voltage using internal reference vs. dac code max2067 toc29 dac code dac voltage (v) 3.0 1.5 2.5 1.0 2.0 0.5 0 0 96 160 224 32 256 192 128 64 v cc = 4.75v, 5.00v, 5.25v dac voltage drift using internal reference vs. dac code max2067 toc30 dac code dac voltage change (v) 0.05 0 0.04 -0.01 0.03 0.02 0.01 -0.02 -0.03 -0.04 -0.05 0 96 160 224 32 256 192 128 64 t c changed from +25 c to +85 c t c changed from +25 c to -40 c dac voltage drift using internal reference vs. dac code max2067 toc31 dac code dac voltage change (v) 0.0100 0 0.0075 -0.0025 0.0050 0.0025 -0.0050 -0.0075 -0.0100 0 96 160 224 32 256 192 128 64 v cc changed from 5.00v to 4.75v v cc changed from 5.00v to 5.25v typical operating characteristics (continued) ( v cc = v dd = +5.0v, hc mode , attenuator set for maximum gain, p in = -20dbm, f rf = 200mhz, and t c = +25?, internal dac refer- ence used, unless otherwise noted.)
max2067 50mhz to 1000mhz high-linearity, serial/analog-controlled vga 10 ______________________________________________________________________________________ gain vs. rf frequency (attenuator only) max2067 toc32 rf frequency (mhz) gain (db) 850 450 650 250 -3 -4 -2 -1 0 -5 50 1050 t c = +25 c t c = -40 c t c = +85 c gain vs. rf frequency (attenuator only) max2067 toc33 rf frequency (mhz) gain (db) 850 450 650 250 -3 -4 -2 -1 0 -5 50 1050 v cc = 4.75v, 5.00v, 5.25v typical operating characteristics (continued) ( v cc = v dd = +5.0v, attenuator only , maximum gain, p in = -20dbm, and t c = +25?, unless otherwise noted.)
gain vs. rf frequency (low-current mode) max2067 toc36 rf frequency (mhz) gain (db) 22 23 24 19 20 17 18 21 16 50 450 850 1050 650 250 v cc = 4.75v, 5.00v, 5.25v gain vs. rf frequency (low-current mode) max2067 toc35 rf frequency (mhz) gain (db) 22 23 24 19 20 17 18 21 16 50 450 850 1050 650 250 t c = +25 c t c = -40 c t c = +85 c supply current vs. supply voltage (low-current mode) max2067 toc34 v cc (v) supply current (ma) 65 75 85 55 4.750 5.125 5.250 4.875 5.000 t c = +25 c t c = -40 c t c = +85 c max2067 50mhz to 1000mhz high-linearity, serial/analog-controlled vga ______________________________________________________________________________________ 11 input match vs. attenuator setting (low-current mode) max2067 toc37 dac code input match (db) 0 -30 -10 -40 -20 -50 0 96 160 224 32 256 192 128 64 50mhz 450mhz 200mhz 1000mhz output match vs. attenuator setting (low-current mode) max2067 toc38 dac code output match (db) 0 -15 -5 -20 -25 -10 -30 0 96 160 224 32 256 192 128 64 50mhz 450mhz 200mhz 1000mhz noise figure vs. rf frequency (low-current mode) max2067 toc39 rf frequency (mhz) noise figure (db) 6 7 4 3 5 2 50 450 850 1050 650 250 t c = +25 c t c = -40 c t c = +85 c noise figure vs. rf frequency (low-current mode) max2067 toc40 rf frequency (mhz) noise figure (db) 6 7 4 3 5 2 50 450 850 1050 650 250 v cc = 4.75v, 5.00v, 5.25v output p 1db vs. rf frequency (low-current mode) max2067 toc41 rf frequency (mhz) output p 1db (dbm) 17 18 15 14 16 13 50 450 850 1050 650 250 t c = +25 c t c = -40 c t c = +85 c o utput p 1db vs. rf fre q uen c y (low-current mode) max2067 toc42 rf frequency (mhz) output p 1db (dbm) 17 18 15 14 16 13 50 450 850 1050 650 250 v cc = 5.00v v cc = 5.25v v cc = 4.75v typical operating characteristics (continued) ( v cc = v dd = +5.0v, lc mode , attenuator set for maximum gain, p in = -20dbm, f rf = 200mhz, and t c = +25?, internal dac refer- ence used, unless otherwise noted.)
max2067 50mhz to 1000mhz high-linearity, serial/analog-controlled vga 12 ______________________________________________________________________________________ output ip3 vs. rf frequency (low-current mode) max2067 toc43 rf frequency (mhz) output ip3 (dbm) 40 45 30 35 25 50 450 850 1050 650 250 t c = -40 c t c = +85 c t c = +25 c p out = 0dbm/tone output ip3 vs. rf frequency (low-current mode) max2067 toc44 rf frequency (mhz) output ip3 (dbm) 40 45 30 35 25 50 450 850 1050 650 250 p out = 0dbm/tone v cc = 5.00v v cc = 5.25v v cc = 4.75v output ip3 vs. attenuator state (low-current mode) max2067 toc45 dac code output ip3 (dbm) 45 40 35 30 0256 192 128 224 160 96 32 64 t c = +25 c, +85 c tone = lsb, usb p out = -3dbm/tone f rf = 200mhz t c = -40 c, tone = lsb, usb 2nd harmonic vs. rf frequency (low-current mode) max2067 toc46 rf frequency (mhz) 2nd harmonic (dbc) 80 90 60 70 50 40 50 450 850 1050 650 250 t c = -40 c t c = +85 c t c = +25 c p out = 3dbm 2nd harmonic vs. rf frequency (low-current mode) max2067 toc47 rf frequency (mhz) 2nd harmonic (dbc) 80 90 60 50 70 40 50 450 850 1050 650 250 p out = 3dbm v cc = 5.00v v cc = 5.25v v cc = 4.75v 2nd harmonic vs. attenuator state (low-current mode) max2067 toc48 dac code 2nd harmonic (dbc) 90 70 80 60 50 0 96 160 224 32 256 192 128 64 t c = +25 c p out = 0dbm f rf = 200mhz t c = -40 c t c = +85 c 3rd harmonic vs. rf frequency (low-current mode) max2067 toc49 rf frequency (mhz) 3rd harmonic (dbc) 90 100 80 70 60 50 450 850 1050 650 250 t c = -40 c t c = +85 c t c = +25 c p out = 3dbm 3rd harmonic vs. rf frequency (low-current mode) max2067 toc50 rf frequency (mhz) 3rd harmonic (dbc) 90 100 70 80 60 50 450 850 1050 650 250 p out = 3dbm v cc = 5.00v v cc = 5.25v v cc = 4.75v 3rd harmonic vs. attenuator state (low-current mode) max2067 toc51 dac code 3rd harmonic (dbc) 100 85 90 75 95 80 70 0 96 160 224 32 256 192 128 64 t c = +25 c p out = 0dbm f rf = 200mhz t c = -40 c t c = +85 c typical operating characteristics (continued) ( v cc = v dd = +5.0v, lc mode , attenuator set for maximum gain, p in = -20dbm, f rf = 200mhz, and t c = +25?, internal dac refer- ence used, unless otherwise noted.)
max2067 50mhz to 1000mhz high-linearity, serial/analog-controlled vga ______________________________________________________________________________________ 13 oip2 vs. rf frequency (low-current mode) max2067 toc52 rf frequency (mhz) oip2 (dbm) 80 90 70 50 60 40 50 450 850 1050 650 250 t c = -40 c t c = +85 c t c = +25 c p out = 0dbm/tone oip2 vs. rf frequency (low-current mode) max2067 toc53 rf frequency (mhz) oip2 (dbm) 80 90 50 60 70 40 50 450 850 1050 650 250 p out = 0dbm/tone v cc = 5.00v v cc = 5.25v v cc = 4.75v oip2 vs. attenuator state (low-current mode) max2067 toc54 dac code oip2 (dbm) 90 70 80 50 60 40 0 96 160 224 32 256 192 128 64 t c = +25 c t c = -40 c t c = +85 c p out = -3dbm/tone f rf = 200mhz typical operating characteristics (continued) ( v cc = v dd = +5.0v, lc mode , attenuator set for maximum gain, p in = -20dbm, f rf = 200mhz, and t c = +25?, internal dac refer- ence used, unless otherwise noted.)
max2067 50mhz to 1000mhz high-linearity, serial/analog-controlled vga 14 ______________________________________________________________________________________ supply current vs. supply voltage max2067 toc55 v cc (v) supply current (ma) 55 65 75 45 3.00 3.45 3.60 3.15 3.30 t c = +25 c t c = -40 c t c = +85 c gain vs. rf frequency max2067 toc56 rf frequency (mhz) gain (db) 22 23 24 19 20 17 18 21 16 50 450 850 1050 650 250 t c = +25 c t c = -40 c t c = +85 c v cc = 3.3v gain vs. rf frequency max2067 toc57 rf frequency (mhz) gain (db) 23 24 19 17 21 20 18 22 16 50 450 850 1050 650 250 v cc = 3.6v v cc = 3.3v v cc = 3.0v input match vs. attenuator setting max2067 toc58 dac code input match (db) 0 -30 -10 -20 -40 0 96 160 224 32 256 192 128 64 50mhz v cc = 3.3v 450mhz 200mhz 1000mhz output match vs. attenuator setting max2067 toc59 dac code output match (db) 0 -25 -15 -20 -5 -10 -30 0 96 160 224 32 256 192 128 64 50mhz v cc = 3.3v 450mhz 200mhz 1000mhz noise figure vs. rf frequency max2067 toc60 rf frequency (mhz) noise figure (db) 7 5 6 3 4 2 50 450 850 1050 650 250 t c = +25 c t c = -40 c t c = +85 c v cc = 3.3v noise figure vs. rf frequency max2067 toc61 rf frequency (mhz) noise figure (db) 7 5 3 6 4 2 50 450 850 1050 650 250 v cc = 3.0v v cc = 3.3v v cc = 3.6v output p 1db vs. rf frequency max2067 toc62 rf frequency (mhz) output p 1db (dbm) 15 16 17 12 13 10 11 14 9 50 450 850 1050 650 250 t c = +25 c t c = -40 c t c = +85 c v cc = 3.3v output p 1db vs. rf frequency max2067 toc63 rf frequency (mhz) output p 1db (dbm) 17 14 10 16 12 15 11 13 9 50 450 850 650 1050 250 v cc = 3.6v v cc = 3.3v v cc = 3.0v typical operating characteristics (continued) ( v cc = v dd = +3.3v, hc mode , attenuator set for maximum gain, p in = -20dbm, f rf = 200mhz, and t c = +25?, internal dac refer- ence used, unless otherwise noted.)
max2067 50mhz to 1000mhz high-linearity, serial/analog-controlled vga ______________________________________________________________________________________ 15 output ip3 vs. rf frequency max2067 toc64 rf frequency (mhz) output ip3 (dbm) 45 40 50 25 30 35 20 50 450 850 1050 650 250 p out = 0dbm/tone t c = +25 c t c = -40 c t c = +85 c v cc = 3.3v output ip3 vs. rf frequency max2067 toc65 rf frequency (mhz) output ip3 (dbm) 40 50 30 35 45 25 20 50 450 850 1050 650 250 p out = 0dbm/tone v cc = 3.6v v cc = 3.3v v cc = 3.0v output ip3 vs. attenuator state max2067 toc66 dac code output ip3 (dbm) 45 40 35 30 25 0256 192 128 224 160 96 32 64 t c = +25 c, +85 c tone = lsb, usb p out = -3dbm/tone f rf = 200mhz t c = -40 c, tone = lsb, usb v cc = 3.3v 2nd harmonic vs. rf frequency max2067 toc67 rf frequency (mhz) 2nd harmonic (dbc) 80 60 70 40 50 30 50 450 850 1050 650 250 t c = +25 c t c = -40 c t c = +85 c v cc = 3.3v p out = 3dbm 2nd harmonic vs. rf frequency max2067 toc68 rf frequency (mhz) 2nd harmonic (dbc) 60 80 40 50 70 30 50 450 850 1050 650 250 p out = 3dbm v cc = 3.6v v cc = 3.3v v cc = 3.0v 2nd harmonic vs. attenuator state max2067 toc69 2nd harmonic (dbc) 80 60 70 50 40 t c = -40 c t c = +85 c dac code 0256 192 128 224 160 96 32 64 p out = 0dbm f rf = 200mhz v cc = 3.3v t c = +25 c 3rd harmonic vs. rf frequency max2067 toc70 rf frequency (mhz) 3rd harmonic (dbc) 100 110 70 80 60 90 50 50 450 850 1050 650 250 t c = +25 c t c = -40 c t c = +85 c v cc = 3.3v p out = 3dbm 3rd harmonic vs. rf frequency max2067 toc71 rf frequency (mhz) 3rd harmonic (dbc) 80 110 60 70 100 90 50 50 450 850 1050 650 250 p out = 3dbm v cc = 3.6v v cc = 3.3v v cc = 3.0v 3rd harmonic vs. attenuator state max2067 toc72 dac code 3rd harmonic (dbc) 100 90 80 70 60 0256 192 128 224 160 96 32 64 p out = 0dbm f rf = 200mhz t c = +85 c t c = -40 c t c = +25 c v cc = 3.3v typical operating characteristics (continued) ( v cc = v dd = +3.3v, hc mode , attenuator set for maximum gain, p in = -20dbm, f rf = 200mhz, and t c = +25?, internal dac refer- ence used, unless otherwise noted.)
max2067 50mhz to 1000mhz high-linearity, serial/analog-controlled vga 16 ______________________________________________________________________________________ oip2 vs. rf frequency max2067 toc73 rf frequency (mhz) oip2 (dbm) 60 70 50 40 30 50 450 850 1050 650 250 t c = +25 c t c = -40 c t c = +85 c v cc = 3.3v p out = 0dbm/tone oip2 vs. rf frequency max2067 toc74 rf frequency (mhz) oip2 (dbm) 60 70 50 40 30 50 450 850 1050 650 250 v cc = 3.3v v cc = 3.0v v cc = 3.6v p out = 0dbm/tone oip2 vs. attenuator state max2067 toc75 dac code oip2 (dbm) 70 60 50 40 30 0256 192 128 224 160 96 32 64 p out = -3dbm/tone f rf = 200mhz t c = +85 c t c = -40 c t c = +25 c v cc = 3.3v typical operating characteristics (continued) ( v cc = v dd = +3.3v, hc mode , attenuator set for maximum gain, p in = -20dbm, f rf = 200mhz, and t c = +25?, internal dac refer- ence used, unless otherwise noted.)
max2067 50mhz to 1000mhz high-linearity, serial/analog-controlled vga ______________________________________________________________________________________ 17 pin description pin name description 1, 16, 19, 22, 24?8, 30, 31, 33?6 gnd ground 2 vref_select dac reference voltage selection logic input. logic 1 = internal dac reference voltage, logic 0 = external dac reference voltage. logic input disabled (don? care) when vdac_en = logic 0. 3 vdac_en dac enable/disable logic input. logic 0 = disable dac circuit, logic 1 = enable dac circuit. 4 data spi data digital input 5 clk spi clock digital input 6 cs spi chip-select digital input 7 vdd_logic digital logic supply input. connect to the digital logic power supply, v dd , bypass to gnd with a 10nf capacitor as close as possible to the pin. 8?5, 23, 29 gnd ground. see the pin-compatibility considerations section. 17 amp_out driver amplifier output (50 ? ). see the typical application circuit for details. 18 rset driver amplifier bias-setting input. see the external bias section. 20 amp_in driver amplifier input (50 ? ). see the typical application circuit for details. 21 vcc_amp driver amplifier supply voltage input. connect to the v cc power supply. bypass to gnd with 1000pf and 10nf capacitors as close as possible to the pin, with the smaller value capacitor closer to the part. 32 atten_out analog attenuator output. internally matched to 50 ? . requires an external dc- blocking capacitor. 37 atten_in analog attenuator input. internally matched to 50 ? . requires an external dc- blocking capacitor. 38 vcc_analog analog bias and control supply voltage input. bypass to gnd with a 10nf capacitor as close as possible to the pin. 39 analog_vctrl analog attenuator voltage-control input 40 vref_in external dac voltage reference input ?p exposed pad. internally connected to gnd. connect ep to ground for proper rf performance and enhanced thermal dissipation.
max2067 50mhz to 1000mhz high-linearity, serial/analog-controlled vga 18 ______________________________________________________________________________________ detailed description the max2067 high-linearity analog variable-gain ampli- fier is a general-purpose, high-performance amplifier designed to interface with 50 ? systems operating in the 50mhz to 1000mhz frequency range. the max2067 integrates an analog attenuator to provide 31db of total gain control, as well as a driver amplifier optimized to provide high gain, high ip3, low noise figure, and low power consumption. for applications that do not require high linearity, the bias current of the amplifier can be adjusted by an external resistor to further reduce power consumption. the analog attenuator is controlled using an external voltage or through the spi-compatible interface using an on-chip dac. because each stage has its own exter- nal rf input and rf output, this component can be con- figured to either optimize nf (amplifier configured first), or oip3 (amplifier last). the device? performance fea- tures include 22db stand-alone amplifier gain (amplifier only), 4db nf at maximum gain (includes attenuator insertion loss), and a high oip3 level of +43dbm. each of these features makes the max2067 an ideal vga for numerous receiver and transmitter applications. in addition, the max2067 operates from a single +5v supply, or a single +3.3v supply with slightly reduced performance, and has adjustable bias to trade current consumption for linearity performance. analog attenuator the max2067? analog attenuator has a dynamic range of 31db and is controlled using an external voltage or through the 3-wire spi using an on-chip 8-bit dac. see the applications information section and table 1 for attenuator programming details. the attenuator can be used for both static and dynamic power control. driver amplifier the max2067 includes a high-performance driver with a fixed gain of 22db. the driver amplifier circuit is opti- mized for high linearity for the 50mhz to 1000mhz fre- quency range. applications information attenuator control the analog attenuator is controlled by either an external control voltage applied at analog_vctrl (pin 39) or by the on-chip 8-bit dac. through the utilization of this control dac, the user can easily adjust the analog attenuation in 0.12db increments through a simple spi command. the dac enable/disable logic-input pin (vdac_en), and the dac reference voltage selection logic-input pin (vref_select) determine how the attenuator is controlled. when the dac is enabled, either the on-chip voltage reference or the external volt- age reference can be selected. see table 1 for the attenuator and dac operation truth table. although this on-chip dac eliminates the need for an external analog control voltage, the user still has the option of disabling the dac and using an external ana- log control voltage for instances where additional atten- uation resolution is needed, or in cases where the gain trim/automatic gain-control (agc) loop is purely analog. spi interface and attenuator settings the max2067 employs a 3-wire spi/microwire- compatible serial interface to program the on-chip dac. eight bits of data are shifted in msb first and framed by cs . when cs is low, the clock is active and data is shifted on the rising edge of the clock. when cs transi- tions high, the data is latched and the attenuator setting changes (figure 1). see table 2 for details on the spi data format. table 1. control logic vdac_en vr ef _ sel ec t analog attenuator d/a converter 0 x controlled by external control voltage disabled 1 1 controlled by on-chip dac enabled (dac uses on-chip voltage reference) 1 0 controlled by on-chip dac e nab l ed ( d ac uses exter nal vol tag e r efer ence) x = don? care. microwire is a trademark of national semiconductor corp.
max2067 50mhz to 1000mhz high-linearity, serial/analog-controlled vga ______________________________________________________________________________________ 19 data clock cs t ews t ew t es t cw t cs dn msb lsb d(n - 1) d1 d0 t ch figure 1. spi timing diagram table 2. spi data format function bit description d7 bit 7 (msb) of on-chip dac used to program the analog attenuator d6 bit 6 of dac d5 bit 5 of dac d4 bit 4 of dac d3 bit 3 of dac d2 bit 2 of dac d1 bit 1 of dac on-chip dac d0 (lsb) bit 0 (lsb) of the on-chip dac
max2067 50mhz to 1000mhz high-linearity, serial/analog-controlled vga 20 ______________________________________________________________________________________ table 4. typical application circuit component values (hc mode) designation value size vendor description c1, c2, c7, c12 10nf 0402 murata mfg. co., ltd. x7r c3, c4, c6, c8, c9 1000pf 0402 murata mfg. co., ltd. c0g ceramic capacitors c10, c11 150pf 0402 murata mfg. co., ltd. c0g ceramic capacitors l1 470nh 1008 coilcraft, inc. 1008cs-471xjlc r1, r1a 10 ? 0402 panasonic corp. 1% r2 (+3.3v applications only) 1k ? 0402 panasonic corp. 1% r3 (+3.3v applications only) 2k ? 0402 panasonic corp. 1% r4 (+5v applications and using internal dac only) 47k ? 0402 panasonic corp. 1% u1 40-pin thin qfn-ep (6mm x 6mm) maxim integrated products, inc. MAX2067ETL+ external bias bias currents for the driver amplifier are set and opti- mized through external resistors. resistors r1 and r1a connected to rset (pin 18) set the bias current for the amplifier. the external biasing resistor values can be increased for reduced current operation at the expense of performance. see tables 4 and 5 for details. pin-compatibility considerations the max2067 is a simplified version of the max2065 analog/digital vga. the max2067 does not contain a digital attenuator and parallel inputs d0?4. the asso- ciated input/output pins are internally connected to ground (table 3). ground the unused input/output pins to optimize isolation. ( see the typical application circuit.) +5v and +3.3v supply voltage the max2067 features an optional +3.3v supply voltage operation with slightly reduced linearity performance. layout considerations the pin configuration of the max2067 has been opti- mized to facilitate a very compact physical layout of the device and its associated discrete components. the exposed paddle (ep) of the max2067? 40-pin thin qfn-ep package provides a low thermal-resistance path to the die. it is important that the pcb on which the max2067 is mounted be designed to conduct heat from the ep. in addition, provide the ep with a low- inductance path to electrical ground. the ep must be soldered to a ground plane on the pcb, either directly or through an array of plated via holes. table 3. max2065/max2067 pin comparison pin max2065 max2067 8 ser/par gnd 9 state_a gnd 10 state_b gnd 11 d4 gnd 12 d3 gnd 13 d2 gnd 14 d1 gnd 15 d0 gnd 23 atten2_out gnd 29 atten2_in gnd
max2067 50mhz to 1000mhz high-linearity, serial/analog-controlled vga ______________________________________________________________________________________ 21 table 5. typical application circuit component values (lc mode) designation value size vendor description c1, c2, c7, c12 10nf 0402 murata mfg. co., ltd. x7r c3, c4, c6, c8, c9 1000pf 0402 murata mfg. co., ltd. c0g ceramic capacitors c10, c11 150pf 0402 murata mfg. co., ltd. c0g ceramic capacitors l1 470nh 1008 coilcraft, inc. 1008cs-471xjlc r1 24 ? 0402 vishay 1% r1a 10nf 0402 murata mfg. co., ltd. x7r r2 (+3.3v applications only) 1k ? 0402 panasonic corp. 1% r3 (+3.3v applications only) 2k ? 0402 panasonic corp. 1% r4 (+5v applications and using internal dac only) 47k ? 0402 panasonic corp. 1% u1 40-pin thin qfn-ep (6mm x 6mm) maxim integrated products, inc. MAX2067ETL+
max2067 50mhz to 1000mhz high-linearity, serial/analog-controlled vga 22 ______________________________________________________________________________________ vcc_analog 38 13 15 36 gnd atten_in 14 37 gnd gnd 16 35 amp_out gnd 17 34 gnd 33 rset 18 atten_out 32 gnd 19 amp_in gnd 20 31 analog_vctrl 12 39 vref_in 11 40 23 8 6 cs gnd 25 24 7 vdd_logic gnd 5 clk gnd 26 4 data gnd 27 3 gnd vdac_en 28 2 vref_select vref_in 29 22 9 gnd 21 10 vcc_amp note: remove r4 and c10 when driving analog_vctrl with an external voltage. 130 gnd gnd + analog attenuator vref dac ep driver amp spi interface gnd gnd gnd gnd *in lc mode, r1a is a 10nf capacitor. see table 5 for details. gnd analog_vctrl c1 c4 rf output l1 c3 v dd c11 c12 c10 gnd gnd gnd gnd gnd c2 v cc v cc c7 c6 v cc r1 r1a* r2 r3 c8 c9 rf input r4 max2067 typical application circuit
max2067 50mhz to 1000mhz high-linearity, serial/analog-controlled vga maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a maxim product. no circu it patent licenses are implied. maxim reserves the right to change the circuitry and specifications without notice at any time. maxim integrated products, 120 san gabriel drive, sunnyvale, ca 94086 408-737-7600 ____________________ 23 2008 maxim integrated products is a registered trademark of maxim integrated products, inc. vcc_analog 38 gnd 13 gnd 15 36 gnd gnd atten_in 14 37 gnd gnd 16 35 tqfn exposed pad on bottom. connect ep to gnd. gnd 17 34 gnd 33 rset amp_out 18 atten_out 32 gnd 19 amp_in gnd 20 31 gnd analog_vctrl 12 39 gnd vref_in 11 40 23 8 gnd gnd 6 cs gnd 25 24 7 vdd_logic gnd 5 clk gnd 26 4 data gnd 27 3 gnd vdac_en 28 2 gnd vref_select 29 22 9 gnd gnd 21 10 gnd vcc_amp 1 top view 30 gnd gnd + analog attenuator vref dac driver amp spi interface max2067 pin configuration/functional block diagram chip information process: sige bicmos package information for the latest package outline information, go to www.maxim-ic.com/packages . package type package code document no. 40 thin qfn-ep t4066-3 21-0141


▲Up To Search▲   

 
Price & Availability of MAX2067ETL

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X